
42

The Research Monograph Series in Computing, Electrical & Communication Networks
Vol. 1 (01), April 2023, pp. 42–43

CHAPTER 6

CONCLUSION AND FUTURE
ENHANCEMENTS

6.1 OVERVIEW

Many problems which are inherent in engineering large, complex,
distributed, long lived software systems have been doubted with software
architecture. In the emergence of many architectural styles, modeling
notations and analysis techniques from the software architecture research
community many developers are provided with conceptual tools to tackle
these problems. But these approaches do not address the relationship
between the abstract architectural models and concrete system
implementations.

6.2 CONCLUSION

The automated generation of performance feedback in software
architectures is dealt in this thesis. In order to keep track of the
performance knowledge which tends to be fragmented and quickly lost
a methodology is devised. This is done with the objectives of interpreting
the performance analysis results and with the suggestion of the most
suitable architectural reconfigurations. This aims at integration of
different forms of data (e.g. architectural model elements, performance
indices), to maintain relationships between them and manage the data
over time.

Although there exists, many approaches in view of evaluating
software architecture, implementation of these in software product line
is expensive and lack of focusing on the reusability of the products. On
the contrary, the proposed approach which has a comprehensive product
line architecture modeling methods is set to change its basic approach.
The advantages are using reusable, built-in change sets, and the surface
evaluation.

	 Conclusion and Future Enhancements	 43

The research work exposes a model for implementation of refactoring
the software architecture automatically into a performance model. The
research work is concluded by identifying

•	 The principles and concept of automatic transforming architecture
model are discovered and integrated.

•	 Recognize the translation of software model into performance
model.

•	 To simplify development process for performing automated
analysis of Component Based Architecture, a methodology was
derived.

•	 The approach is demonstrated as a framework which utilizes the
methodology designed, implemented, utilized and evaluated.

•	 Provides a feedback at the design level to Refactor and improvise
the design.

The detailed research of automatic transforming architecture design
through UML diagram is offered.

6.3 FURTHER ENHANCEMENTS

The validation and lack of model parameters are the two
recommendations considered for future research work. The approach
needs to be more extensively validated to determine the extent of its
support to the user activities. The two dimensions in validation are: (i)
it has to be exposed to a set of target user’s e.g. model-driven developers,
graduates in a software engineering course towards analyzing its
scope and usability. (ii) Its application in complex case studies with the
involvement of industry partners towards analyzing its scalability. It is
worth to have thus experimentation. By analyzing the model piecewise,
beginning from sub models, lack of information or even uncertainty,
about model parameter values can be tackled. It is believed that these two
recommendations are appropriate for the present research work.

The VSD tool can be improved in various ways. First random
properties of the static objects are allowed to utilize the class diagram
which can be achieved by attaching a “note” to the appropriate class.
Thus classes can be used towards indicating the multiplicity of the objects
involved in the system.

